3.3.39 \(\int \frac {(a+a \sec (c+d x))^{5/2}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\) [239]

3.3.39.1 Optimal result
3.3.39.2 Mathematica [A] (verified)
3.3.39.3 Rubi [A] (verified)
3.3.39.4 Maple [A] (verified)
3.3.39.5 Fricas [A] (verification not implemented)
3.3.39.6 Sympy [F(-1)]
3.3.39.7 Maxima [B] (verification not implemented)
3.3.39.8 Giac [F]
3.3.39.9 Mupad [B] (verification not implemented)

3.3.39.1 Optimal result

Integrand size = 25, antiderivative size = 156 \[ \int \frac {(a+a \sec (c+d x))^{5/2}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {64 a^3 \sqrt {\sec (c+d x)} \sin (c+d x)}{21 d \sqrt {a+a \sec (c+d x)}}+\frac {16 a^2 \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 a (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{7 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 (a+a \sec (c+d x))^{5/2} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)} \]

output
2/7*a*(a+a*sec(d*x+c))^(3/2)*sin(d*x+c)/d/sec(d*x+c)^(3/2)+2/7*(a+a*sec(d* 
x+c))^(5/2)*sin(d*x+c)/d/sec(d*x+c)^(5/2)+64/21*a^3*sin(d*x+c)*sec(d*x+c)^ 
(1/2)/d/(a+a*sec(d*x+c))^(1/2)+16/21*a^2*sin(d*x+c)*(a+a*sec(d*x+c))^(1/2) 
/d/sec(d*x+c)^(1/2)
 
3.3.39.2 Mathematica [A] (verified)

Time = 0.38 (sec) , antiderivative size = 74, normalized size of antiderivative = 0.47 \[ \int \frac {(a+a \sec (c+d x))^{5/2}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {a^2 (208+101 \cos (c+d x)+24 \cos (2 (c+d x))+3 \cos (3 (c+d x))) \sqrt {a (1+\sec (c+d x))} \tan \left (\frac {1}{2} (c+d x)\right )}{42 d \sqrt {\sec (c+d x)}} \]

input
Integrate[(a + a*Sec[c + d*x])^(5/2)/Sec[c + d*x]^(7/2),x]
 
output
(a^2*(208 + 101*Cos[c + d*x] + 24*Cos[2*(c + d*x)] + 3*Cos[3*(c + d*x)])*S 
qrt[a*(1 + Sec[c + d*x])]*Tan[(c + d*x)/2])/(42*d*Sqrt[Sec[c + d*x]])
 
3.3.39.3 Rubi [A] (verified)

Time = 0.72 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.06, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3042, 4299, 3042, 4296, 3042, 4296, 3042, 4291}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sec (c+d x)+a)^{5/2}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}}{\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 4299

\(\displaystyle \frac {5}{7} \int \frac {(\sec (c+d x) a+a)^{5/2}}{\sec ^{\frac {5}{2}}(c+d x)}dx+\frac {2 \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5}{7} \int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{5/2}}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {2 \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 4296

\(\displaystyle \frac {5}{7} \left (\frac {8}{5} a \int \frac {(\sec (c+d x) a+a)^{3/2}}{\sec ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5}{7} \left (\frac {8}{5} a \int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 a \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 4296

\(\displaystyle \frac {5}{7} \left (\frac {8}{5} a \left (\frac {4}{3} a \int \frac {\sqrt {\sec (c+d x) a+a}}{\sqrt {\sec (c+d x)}}dx+\frac {2 a \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {2 a \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {5}{7} \left (\frac {8}{5} a \left (\frac {4}{3} a \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {2 a \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 4291

\(\displaystyle \frac {5}{7} \left (\frac {8}{5} a \left (\frac {8 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {2 a \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {2 a \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

input
Int[(a + a*Sec[c + d*x])^(5/2)/Sec[c + d*x]^(7/2),x]
 
output
(2*(a + a*Sec[c + d*x])^(5/2)*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) + (5* 
((2*a*(a + a*Sec[c + d*x])^(3/2)*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)) + 
(8*a*((8*a^2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x] 
]) + (2*a*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])) 
)/5))/7
 

3.3.39.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4291
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)] 
*(d_.)], x_Symbol] :> Simp[-2*a*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*S 
qrt[d*Csc[e + f*x]])), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4296
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[(-a)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1) 
*((d*Csc[e + f*x])^n/(f*m)), x] + Simp[b*((2*m - 1)/(d*m))   Int[(a + b*Csc 
[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f 
, m, n}, x] && EqQ[a^2 - b^2, 0] && EqQ[m + n, 0] && GtQ[m, 1/2] && Integer 
Q[2*m]
 

rule 4299
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[(-Cot[e + f*x])*(a + b*Csc[e + f*x])^m*((d*Csc 
[e + f*x])^n/(f*(m + 1))), x] + Simp[a*(m/(b*d*(m + 1)))   Int[(a + b*Csc[e 
 + f*x])^m*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, m, n}, 
 x] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LtQ[m, -2^(-1)]
 
3.3.39.4 Maple [A] (verified)

Time = 1.49 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.48

method result size
default \(\frac {2 a^{2} \left (3 \cos \left (d x +c \right )^{3}+12 \cos \left (d x +c \right )^{2}+23 \cos \left (d x +c \right )+46\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \tan \left (d x +c \right )}{21 d \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}\) \(75\)

input
int((a+a*sec(d*x+c))^(5/2)/sec(d*x+c)^(7/2),x,method=_RETURNVERBOSE)
 
output
2/21/d*a^2*(3*cos(d*x+c)^3+12*cos(d*x+c)^2+23*cos(d*x+c)+46)*(a*(1+sec(d*x 
+c)))^(1/2)/(cos(d*x+c)+1)/sec(d*x+c)^(3/2)*tan(d*x+c)
 
3.3.39.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 100, normalized size of antiderivative = 0.64 \[ \int \frac {(a+a \sec (c+d x))^{5/2}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 \, {\left (3 \, a^{2} \cos \left (d x + c\right )^{4} + 12 \, a^{2} \cos \left (d x + c\right )^{3} + 23 \, a^{2} \cos \left (d x + c\right )^{2} + 46 \, a^{2} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{21 \, {\left (d \cos \left (d x + c\right ) + d\right )} \sqrt {\cos \left (d x + c\right )}} \]

input
integrate((a+a*sec(d*x+c))^(5/2)/sec(d*x+c)^(7/2),x, algorithm="fricas")
 
output
2/21*(3*a^2*cos(d*x + c)^4 + 12*a^2*cos(d*x + c)^3 + 23*a^2*cos(d*x + c)^2 
 + 46*a^2*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + 
c)/((d*cos(d*x + c) + d)*sqrt(cos(d*x + c)))
 
3.3.39.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^{5/2}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate((a+a*sec(d*x+c))**(5/2)/sec(d*x+c)**(7/2),x)
 
output
Timed out
 
3.3.39.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 323 vs. \(2 (132) = 264\).

Time = 0.38 (sec) , antiderivative size = 323, normalized size of antiderivative = 2.07 \[ \int \frac {(a+a \sec (c+d x))^{5/2}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {\sqrt {2} {\left (315 \, a^{2} \cos \left (\frac {6}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) \sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) + 77 \, a^{2} \cos \left (\frac {4}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) \sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) + 21 \, a^{2} \cos \left (\frac {2}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) \sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) - 315 \, a^{2} \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) \sin \left (\frac {6}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) - 77 \, a^{2} \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) \sin \left (\frac {4}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) - 21 \, a^{2} \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) \sin \left (\frac {2}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) + 6 \, a^{2} \sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ) + 21 \, a^{2} \sin \left (\frac {5}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) + 77 \, a^{2} \sin \left (\frac {3}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right ) + 315 \, a^{2} \sin \left (\frac {1}{7} \, \arctan \left (\sin \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right ), \cos \left (\frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )\right )\right )} \sqrt {a}}{168 \, d} \]

input
integrate((a+a*sec(d*x+c))^(5/2)/sec(d*x+c)^(7/2),x, algorithm="maxima")
 
output
1/168*sqrt(2)*(315*a^2*cos(6/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 
 7/2*c)))*sin(7/2*d*x + 7/2*c) + 77*a^2*cos(4/7*arctan2(sin(7/2*d*x + 7/2* 
c), cos(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) + 21*a^2*cos(2/7*arctan2(s 
in(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) - 315*a^2 
*cos(7/2*d*x + 7/2*c)*sin(6/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 
7/2*c))) - 77*a^2*cos(7/2*d*x + 7/2*c)*sin(4/7*arctan2(sin(7/2*d*x + 7/2*c 
), cos(7/2*d*x + 7/2*c))) - 21*a^2*cos(7/2*d*x + 7/2*c)*sin(2/7*arctan2(si 
n(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))) + 6*a^2*sin(7/2*d*x + 7/2*c) + 
21*a^2*sin(5/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))) + 77*a 
^2*sin(3/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))) + 315*a^2* 
sin(1/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))))*sqrt(a)/d
 
3.3.39.8 Giac [F]

\[ \int \frac {(a+a \sec (c+d x))^{5/2}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}{\sec \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

input
integrate((a+a*sec(d*x+c))^(5/2)/sec(d*x+c)^(7/2),x, algorithm="giac")
 
output
sage0*x
 
3.3.39.9 Mupad [B] (verification not implemented)

Time = 14.77 (sec) , antiderivative size = 96, normalized size of antiderivative = 0.62 \[ \int \frac {(a+a \sec (c+d x))^{5/2}}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {a^2\,\cos \left (c+d\,x\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\sqrt {\frac {a\,\left (\cos \left (c+d\,x\right )+1\right )}{\cos \left (c+d\,x\right )}}\,\left (392\,\sin \left (c+d\,x\right )+98\,\sin \left (2\,c+2\,d\,x\right )+24\,\sin \left (3\,c+3\,d\,x\right )+3\,\sin \left (4\,c+4\,d\,x\right )\right )}{84\,d\,\left (\cos \left (c+d\,x\right )+1\right )} \]

input
int((a + a/cos(c + d*x))^(5/2)/(1/cos(c + d*x))^(7/2),x)
 
output
(a^2*cos(c + d*x)*(1/cos(c + d*x))^(1/2)*((a*(cos(c + d*x) + 1))/cos(c + d 
*x))^(1/2)*(392*sin(c + d*x) + 98*sin(2*c + 2*d*x) + 24*sin(3*c + 3*d*x) + 
 3*sin(4*c + 4*d*x)))/(84*d*(cos(c + d*x) + 1))